290 research outputs found

    In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine

    Get PDF
    Background: Sutures colonized by bacteria represent a challenge in surgery due to their potential to cause surgical site infections. In order to reduce these type of infections antimicrobially coated surgical sutures are currently under development. In this study, we investigated the antimicrobial drug octenidine as a coating agent for surgical sutures. To achieve high antimicrobial efficacy and required biocompatibility for medical devices, we focused on optimizing octenidine coatings based on fatty acids. For this purpose, antimicrobial sutures were prepared with either octenidine-laurate or octenidine-palmitate at 11, 22, and 33 mu g/cm drug concentration normalized per length of sutures. Octenidine containing sutures were compared to the commercial triclosan-coated suture Vicryl (R) Plus. The release of octenidine into aqueous solution was analyzed and long-term antimicrobial efficacy was assessed via agar diffusion tests using Staphylococcus aureus. For determining biocompatibility, cytotoxicity assays (WST-1) were performed using L-929 mouse fibroblasts. Results: In a 7 days elution experiment, octenidine-palmitate coated sutures demonstrated much slower drug release (11 mu g/cm: 7 %;22 mu g/cm: 5 %;33 mu g/cm: 33 %) than octenidine-laurate sutures (11 mu g/cm: 82 %;22 mu g/cm: 88 %;33 mu g/cm: 87 %). Furthermore sutures at 11 mu g/cm drug content were associated with acceptable cytotoxicity according to ISO 10993-5 standard and showed, similar to Vicryl (R) Plus, relevant efficacy to inhibit surrounding bacterial growth for up to 9 days. Conclusions: Octenidine coated sutures with a concentration of 11 mu g/cm revealed high antimicrobial efficacy and biocompatibility. Due to their delayed release, palmitate carriers should be preferred. Such coatings are candidates for clinical testing in regard to their safety and efficacy

    Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing

    Get PDF
    Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG) for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention

    Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting

    Get PDF
    A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research

    Lexical selection in action: Evidence from spontaneous punning

    No full text
    Analysis of a corpus of spontaneously produced Japanese puns from a single speaker over a two-year period provides a view of how a punster selects a source word for a pun and transforms it into another word for humorous effect. The pun-making process is driven by a principle of similarity: the source word should as far as possible be preserved (in terms of segmental sequence) in the pun. This renders homophones (English example: band–banned) the pun type of choice, with part–whole relationships of embedding (cap–capture), and mutations of the source word (peas–bees) rather less favored. Similarity also governs mutations in that single-phoneme substitutions outnumber larger changes, and in phoneme substitutions, subphonemic features tend to be preserved. The process of spontaneous punning thus applies, on line, the same similarity criteria as govern explicit similarity judgments and offline decisions about pun success (e.g., for inclusion in published collections). Finally, the process of spoken-word recognition is word-play-friendly in that it involves multiple word-form activation and competition, which, coupled with known techniques in use in difficult listening conditions, enables listeners to generate most pun types as offshoots of normal listening procedures

    HelexKids:a word frequency database for Greek and Cypriot primary school children

    Get PDF
    In this article, we introduce HelexKids, an online written-word database for Greek-speaking children in primary education (Grades 1 to 6). The database is organized on a grade-by-grade basis, and on a cumulative basis by combining Grade 1 with Grades 2 to 6. It provides values for Zipf, frequency per million, dispersion, estimated word frequency per million, standard word frequency, contextual diversity, orthographic Levenshtein distance, and lemma frequency. These values are derived from 116 textbooks used in primary education in Greece and Cyprus, producing a total of 68,692 different word types. HelexKids was developed to assist researchers in studying language development, educators in selecting age-appropriate items for teaching, as well as writers and authors of educational books for Greek/Cypriot children. The database is open access and can be searched online at www.helexkids.org

    Lipid droplets: a classic organelle with new outfits

    Get PDF
    Lipid droplets are depots of neutral lipids that exist virtually in any kind of cell. Recent studies have revealed that the lipid droplet is not a mere lipid blob, but a major contributor not only to lipid homeostasis but also to diverse cellular functions. Because of the unique structure as well as the functional importance in relation to obesity, steatosis, and other prevailing diseases, the lipid droplet is now reborn as a brand new organelle, attracting interests from researchers of many disciplines
    corecore